An AP2 Transcription Factor Is Required for a Sleep-Active Neuron to Induce Sleep-like Quiescence in C. elegans
نویسندگان
چکیده
BACKGROUND Sleep is an essential behavior that is found in all animals that have a nervous system. Neural activity is thought to control sleep, but little is known about the identity and the function of neural circuits underlying sleep. Lethargus is a developmentally regulated period of behavioral quiescence in C. elegans larvae that has sleep-like properties. RESULTS We studied sleep-like behavior in C. elegans larvae and found that it requires a highly conserved AP2 transcription factor, aptf-1, which was expressed strongly in only five interneurons in the head. Expression of aptf-1 in one of these neurons, the GABAergic neuron RIS, was required for quiescence. RIS was strongly and acutely activated at the transition from wake-like to sleep-like behavior. Optogenetic activation of aptf-1-expressing neurons ectopically induced acute behavioral quiescence in an aptf-1-dependent manner. RIS ablation caused a dramatic reduction of quiescence. RIS-dependent quiescence, however, does not require GABA but requires neuropeptide signaling. CONCLUSIONS We conclude that RIS acts as a sleep-active, sleep-promoting neuron that requires aptf-1 to induce sleep-like behavior through neuropeptide signaling. Sleep-promoting GABAergic-peptidergic neurons have also been identified in vertebrate brains, suggesting that common circuit principles exist between sleep in vertebrates and sleep-like behavior in invertebrates.
منابع مشابه
A Conserved GEF for Rho-Family GTPases Acts in an EGF Signaling Pathway to Promote Sleep-like Quiescence in Caenorhabditis elegans.
Sleep is evolutionarily conserved and required for organism homeostasis and survival. Despite this importance, the molecular and cellular mechanisms underlying sleep are not well understood. Caenorhabditis elegans exhibits sleep-like behavioral quiescence and thus provides a valuable, simple model system for the study of cellular and molecular regulators of this process. In C. elegans, epiderma...
متن کاملThe neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans
Neuropeptides have central roles in the regulation of homoeostatic behaviours such as sleep and feeding. Caenorhabditis elegans displays sleep-like quiescence of locomotion and feeding during a larval transition stage called lethargus and feeds during active larval and adult stages. Here we show that the neuropeptide NLP-22 is a regulator of Caenorhabditis elegans sleep-like quiescence observed...
متن کاملFMRFamide-like FLP-13 Neuropeptides Promote Quiescence following Heat Stress in Caenorhabditis elegans
Among the most important decisions an animal makes is whether to engage in active movement and feeding behavior or to become quiescent. The molecular signaling mechanisms underlying this decision remain largely unknown. The nematode Caenorhabditis elegans displays sleep-like quiescence following exposures that result in cellular stress. The neurosecretory ALA neuron is required for this stress-...
متن کاملDAF-16/FOXO Regulates Homeostasis of Essential Sleep-like Behavior during Larval Transitions in C. elegans
Sleep homeostasis, which refers to the maintenance of sleep amount or depth following sleep deprivation, indicates that sleep and sleep-like states serve fundamental functions that cannot be bypassed [1]. Homeostasis of sleep-like behavior is observed during C. elegans lethargus, a 2-3 hr behavioral quiescent period that occurs during larval state transitions [2]. Here, we report a role for DAF...
متن کاملCellular Stress Induces a Protective Sleep-like State in C. elegans
Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2013